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This paper presents the use of neural networks and genetic algorithms as tools for modeling and optimization applied to a complex polymer-
ization process–synthesis of statistical dimethyl-methylvinylsiloxane copolymers. A feed forward neural network models the dependence

between the conversion of monomers and copolymer composition (output variables) and working conditions (temperature, reaction time,
amount of catalyst and initial composition of monomers–input variables). The training and validation data sets are gathered by ring-opening
copolymerization of the octamethylcyclotetrasiloxane (D4) with 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane (D4

V), with a cation

exchange (styrene-divinylbenzene copolymer containing sulfonic groups) as a catalyst, in the absence of solvent. This model is included
into an optimization procedure based on a scalar objective function and solved with a simple genetic algorithm. The genetic algorithm
computes the optimal values for the control variables and for the weight coefficients attached to the individual objectives. An inverse
neural network modeling, that is the identification of reaction conditions leading to a desired value for copolymer composition, is presented

as particular variant of optimization. The genetic algorithm and neural networks prove to be good and accessible tools for solving an optim-
ization problem performed with a multi-objective scalar function and provide important information for the experimental practice.

Keywords: neural networks; direct and inverse modeling; genetic algorithms; optimization; siloxane copolymer;

polydimethylmethylvinylsiloxane

1 Introduction

The implementation of mechanistic models that rely on many
processes from the chemical industry, as well as empirical
correlations, involves a great deal of mathematical difficulties
and, in many instances, lacks accuracy. Neuron-based
modeling can be used confidently as a substitute for such situ-
ations. This is due to the favorable features entailed in their
use. Among these features are: simplicity, fault and noise tol-
erance, plasticity property (can retain its prediction efficiency
even after the removal or damage of some of its neurons),
black box modeling methodology, capability to adapt to
process changes (1).

Artificial neural networks (ANN) have been widely used
for many different industrial areas such as control, prediction,
pattern recognition, classification, speech and vision. ANNs
have been trained to solve nonlinear and complex problems
that are not exactly modeled mathematically or for which

insufficient knowledge is available. ANNs extract the
desired information using the input-output data and can be
used to deal with the problems with incomplete and imprecise
input data.
The polymerization processes are typical examples for

neural network based modeling because of a series of difficul-
ties such as the complex reactions occurring simultaneously
inside the reactor, the large number of kinetic parameters
which are usually not easy to determine, as well as the poor
understanding of chemical and physical phenomena for
mixtures involving polymers.
The open literature presents many attempts concerning neural

network applications for polymerization processes: direct

modeling with different types of neural networks (2–5), neural
networks based soft sensors (6), inferential modeling (7, 8),
inverse neural network modeling (5, 9, 10), optimization

(11–14), process control (15–17). These types of applications
are reviewed in our precedent work (18). Fernandes and Lona
provide a brief tutorial on simple and practical procedures that
can help in selecting and training neural networks and address
complex cases where the application of neural networks has
been successful in the field of polymerization (19).
Process optimization and control can have a significant

strategic impact on polymer plant operability and economics.
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Polymer production facilities face increasing pressures for
production cost reductions and more stringent quality require-
ments (12).

Generally, the optimization of a polymerization process is
multi-objective in nature, since it normally has several objec-
tives, often conflicting and non-commensurable, that must be
satisfied at the same time. Therefore, solving such a problem
is accompanied by difficulties starting with the way of formu-
lating the objective function and continuing with the choice of
working procedure and selection of the results from more
possible options. In the last several years, some research
has been reported in the open literature on the optimization
of polymerization reactors using multiple objective functions
and constraints, and its use in on-line optimizing control.

A multi-objective function can be formulated using
weighted average approach (scalar approach) (20, 21) or
can be a vector of objective functions where all the objectives
are treated simultaneously to find a set of all the solution
(22, 23). The first approach allows simple algorithms to be
used for solving the problem, but depends on the user’s
decision to specify weights to the different objectives based
on good knowledge of the process. On the other hand, the
user has the possibility to change the priorities of the partial
objectives and solve the problem to get a number of different
solutions depending on technological criteria.

In recent years, there is a growing interest in the optimiz-
ation techniques based on evolutionary algorithms, particu-
larly genetic algorithms. Because of their flexibility, ease of
operation, minimal requirements and global perspective,
these algorithms have been successfully used in a wide
variety of multiobjective problems. Multi-objective optimiz-
ation of the polymerization processes is an example of their
applications (23, 24). These techniques do not need any
initial guesses and converge, in most cases, to the global
optimum even when there are several local optima present.
In addition, genetic algorithms use information about the
objective function and not its derivatives (such traditional
optimization techniques), nor do they require any other
auxiliary knowledge about the process.

Many types of genetic algorithms have been described and
applied, the literature being extensively reviewed from this
point of view in the papers of Coello (25), Deb (26) and
Carlos (27), by marking the advantages and disadvantages
of these types of algorithms in simple examples. Different
types of genetic algorithms and their applications in
chemical reaction engineering, including polymerization pro-
cesses, have been pointed out in the reviews of Bhaskar (28)
and Nandasana (29). The efficiency of optimization with vec-
torial objective functions in the frame of genetic algorithms or
genetic programming (30) was proven in relevant practical
applications.

Polysiloxanes, also named as silicones, are the most
important inorganic polymers, the representative term being
polydimethylsiloxane. Silicone polymers containing organic
groups, other than methyl or specific organic function on
the chain or at its ends, have opened new fields of applications

which are a result of siloxane chemical reactivity, solubility,
miscibility, paintability, lubricity, etc.

Dimethyl-methylvinylsiloxane copolymers are very
important precursors for a post-functionalization, because
the vinyl groups can easily be transformed into a variety of
other functional groups. Block or statistical copolymers can
be obtained depending on the chosen reaction pathway (31).
The research developed in the past followed obtaining copo-
lymers having tailored microstructure.

A facile and useful method for the synthesis of statistical
dimethylmethylvinylsiloxane copolymers (Sch. 1) was chosen
in this paper to apply the methods of artificial intelligence for
modeling and optimization. That is, the ring-opening
copolymerization of the octamethylcyclotetrasiloxane with
1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane in the
presence of a solid acid as a catalyst and in the absence of
solvent.

This paper presents the use of neural networks and genetic
algorithms as tools for modeling and optimization applied to a
complex polymerization process–synthesis of dimethyl-
methylvinylsiloxane copolymers. As mentioned above, the
reactions for polysiloxane synthesis are very complex, with
many reactions occurring concomitantly. The variation in
time of the main parameters of the process (conversion and
copolymer composition) was modeled by using direct
neural network modeling. The inverse neural network
modeling, consisting in the determination of reaction con-
ditions that lead to pre-established properties (copolymer
composition), is also performed in this paper.

A neural network model is then included into an optimizing
control scheme, which uses a genetic algorithm solving tech-
nique and a multi-objective function in a scalar form. The
partial objectives are the maximization of the reaction con-
version and the achievement of a desired value for copolymer
composition. The decision variables are reaction temperature,
concentration of the catalyst, reaction time and initial compo-
sition. Our approach presents the advantage of computing the
optimal values for the weights of the objectives within the
genetic algorithm, along with the optimal values for
decision variables.

The contribution of this paper refers mainly to the
modeling and optimization capacities of the simple topolo-
gies and simple working strategies of neural networks and
genetic algorithms, applied for the first time in the polysilox-
anes reaction field. The procedure developed herein is quite
general and it can easily be used for other optimization
problems.

Sch. 1. General structure of the dimethylmethylvinylsiloxane
copolymer.
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2 Experimental

Statistical dimethylmethylvinylsiloxane copolymers are
synthesized by ring-opening copolymerization of the
octamethylcyclotetrasiloxane (D4) with 1,3,5,7-tetravinyl-
1,3,5,7-tetramethylcyclotetrasiloxane (D4

V) using a cation
exchange (styrene-divinylbenzene copolymer containing
sulfonic groups) as a catalyst and working in the absence of
solvent. Water is used as a co-catalyst and chain transfer agent
(32–34).

In the presence of the strong acids, as well as bases, the Si-O
bonds in both unstrained cyclosiloxanes and linear macromol-
ecule (which have comparable energy) can be split, and a
mixture of cyclic and linear polysiloxanes will be obtained,
according to Sch. 2. The siloxane bonds are continuously
broken and reformed until the reaction reaches a thermodyn-
amic equilibrium.

The equilibrium position depends on the starting cycle size,
the substituent nature, and also on the reaction conditions
(concentration of cyclosiloxane units, solvent, initiating
system, and temperature). Therefore, the reactions for polysi-
loxane synthesis are very complex, a series of ring-opening
polymerization, polycondensation, depolymerization by
cyclization and chain scrambling reactions occur at the same
time, except in the case when the conditions for the kinetic
control are created. It is of great interest to know the conditions
in which the copolymers with desired compositions in
maximum yields can be obtained.

2.1 Materials

Octamethylcyclotetrasiloxane, [(CH3)SiO]4, D4, supplied by
Fluka AG with the following characteristics: b.p. ¼ 1758C;
nD
20 ¼ 1.396; d4

20 ¼ 0.955, purity .99% (GC).
1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane (D4

V)
(Fluka AG): b.p. 111/10 mm Hg; nD

20 ¼ 1.4343; d4
20 ¼ 0.9892,

purity.99% (GC).
Purolite CT175-a macroporous styrene-divinylbenzene

copolymer with sulfonic groups, supplied by Viromet,was
utilized after conditioning, which consists of: washing with
water, washing with a 4% NaOH solution, regeneration
with a 4% HCl solution, washing with water and subsequent
dehydration by azeotrope distillation with toluene and
vacuum drying (1108C, 20 mm Hg).

The cation-exchanger has the following characteristics:
active group -SO3H; volumic exchange capacity-1.87 meq/
ml; gravimetric exchange capacity-4.5 meq/g; specific
surface-35 m2/g.

2.2 Techniques

1H-NMR spectra were recorded on a JEOL C-60 HL
Spectrometer using CDCl3 as solvent, and the chemical
shifts were reported to its residual signal.
The kinematic viscosity, h (cSt), was determined at 258C,

with an Ubbelohde Suspended Level Viscometer by using the
relationship: h ¼ k . t, where k is the viscometer constant and
t is the flow time for polymer, in seconds.
Gel permeation chromatographic analyses (GPC) were

carried out on a PL-EMD 950 Evaporative Mass Detector
instrument by using chloroform as an eluent after calibration
with standard polystyrene samples.

2.3 Procedure

Cyclic monomers (D4/D4
V mixture) were loaded in a reaction

vessel equipped with a thermometer, reflux condenser, and
mechanical stirrer, then immersed in a thermostated bath at
the pre-established temperature, according to the experimen-
tal program (a second order, rotable, composed, centered
program). The cation-exchanger, Purolite CT-175, as a
catalyst (2.5 wt.% reported to the reaction mixture) and
water, as a co-catalyst (in a pre-established percent reported
to the reaction mixture) were added when the desired temp-
erature was attained in the reaction vessel. This is the initial
moment of the reaction. The reaction mixture was stirred in
these conditions for a certain time, according to the exper-
imental program, after which the catalyst was removed by fil-
tration. The reaction mixture was devolatilized by heating at
1508C/5 mm Hg. The remained polymer was weighted to
calculate yield and analyzed (the determination of the compo-
sition) (34).
The copolymer composition was determined on the basis of

1H-NMR spectra, as: F1 ¼ [-(CH3)2SiO-]/f[-(CH3)2SiO-]þ
[-(CH3)(C2H3)SiO-]g ¼ (a2 b)/(aþ b), with a, b–the area
of the signal corresponding to methyl and vinyl protons,
respectively.
Experimental data are presented in Table 1.

2.4 Optimization Strategy

An optimization problem can be formulated in terms of the
following elements: an accurate model of the process, a
selected number of control variables, an objective function
and a suitable numerical method for solving the specified
optimization problem.
The optimization procedure includes a neural network

model (NN–neural network), which can be represented:

NN½Inputs: t; T ;C; f1; Outputs: x;F1� ð1Þ

where t is the reaction time, T is the temperature of the
copolymerization process, C–amount of catalyst, f1–initial
composition of the reaction mixture, x-reaction conversion,
F1–copolymer composition.

Sch. 2. Reaction scheme for the obtaining dimethylmethylvinylsi-
loxane copolymer.
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The control variable vector, u, has as components:

u ¼ ½t; T ;C; f1� ð2Þ

An admissible control input u� should be formed in such a
way that the performance index, J, defined by the following
equation, are minimized:

J ¼ wx � ð1� xf Þ þ wF1 � 1�
F1f

F1d

� �2

ð3Þ

subject to:

0 � xf � 1

20 � T � 1108C

0:25 � t � 2:25 h

0:5 � C � 5%� g

0 � F1 � 1

ð4Þ

In the Equation (3), J is the objective function to be mini-
mized, w are weighting factors (wx for conversion and wF1 for
copolymer composition), xf is the conversion at the end of
the reaction, F1d-desired value of the copolymer composition,
F1f -actual value corresponding to the final reaction time.

The objective function includes the maximization of
monomer conversion, which leads to higher productivity.
The constraint on reaction conversion forces the amount of
unreacted monomers to be small, and hence, keeps post-
reactor separation and recycling costs low. The endpoint
requirement on F1 leads to the production of copolymer
having desired properties.

Constraints that are present in industrial reactors are very
important to define the range of variation of parameters and
to disregard possible solutions that might be interesting in a
theoretical approach to the problem.

The optimization procedure includes a neural model and is
solved with a genetic algorithm (GA). The fitness function of

Table 1. Experimental data obtained for copolymerization of the octamethylcyclotetrasiloxane (D4) with 1,3,5,7-tetravinyl-1,3,5,7-
tetramethyl-cyclotetrasiloxane (D4

V)

No. crt.
Reaction
time t, [hr]

Reaction

temperature
T [8C]

Amount of

catalyst C,
[%-g]

Initial

composition
f1
a

Conversion
x

Copolymer

composition
F1

b

1 0.75 45 2.5 0.3 4.44 0.536
2 1.75 45 2.5 0.3 8.28 0.535
3 0.75 75 2.5 0.3 17.82 0.458
4 1.75 75 2.5 0.3 41.50 0.439

5 0.75 45 4.5 0.3 4.46 0.550
6 1.75 45 4.5 0.3 12.60 0.503
7 0.75 75 4.5 0.3 37.96 0.476

8 1.75 75 4.5 0.3 55.68 0.411
9 0.75 45 2.5 0.7 10.12 0.863
10 1.75 45 2.5 0.7 20.00 0.848

11 0.75 45 2.5 0.7 34.74 0.835
12 1.75 75 2.5 0.7 56.31 0.799
13 0.75 45 4.5 0.7 19.86 0.878
14 1.75 45 4.5 0.7 44.96 0.846

15 0.75 75 4.5 0.7 48.98 0.813
16 1.75 75 4.5 0.7 68.61 0.777
17 0.25 60 3.5 0.5 6.22 0.752

18 2.25 60 3.5 0.5 49.18 0.641
19 1.25 30 3.5 0.5 8.44 0.747
20 1.25 90 3.5 0.5 61.70 0.591

21 1.25 60 1.5 0.5 11.71 0.721
22 1.25 60 5.5 0.5 44.78 0.654
23 1.25 60 3.5 0.1 15.29 0.225

24 1.25 60 3.5 0.9 46.18 0.956
25 1.25 60 3.5 0.5 34.20 0.681
26 1.25 60 3.5 0.5 30.10 0.684
27 1.25 60 3.5 0.5 30.84 0.701

28 1.25 60 3.5 0.5 33.62 0.693
29 1.25 60 3.5 0.5 30.41 0.690
30 1.25 60 3.5 0.5 32.53 0.687

31 1.25 60 3.5 0.5 31.42 0.684

aFeed molar ratio, f1 ¼ [-(CH3)2SiO]4/f[-(CH3)2SiO-]4þ [-(CH3)(C2H3)SiO-]4g.
bCopolymer composition, F1 ¼ [-(CH3)2SiO-]/f[-(CH3)2SiO-]þ [-(CH3)(C2H3)SiO-]g.
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the GA is the scalar objective function (3). Figure 1 illustrates
this optimization procedure. Genetic algorithm provides, after
an iterative calculus, the optimal values for decision variables
(t, T, C, f1), which are the inputs for the neural network model
and the weights for the objective function. With these inputs,
the neural network computes the parameters x and F1, and the
last one will by compared with F1d. If the two values are iden-
tical or the difference between them is very small, we can
conclude that the task of the optimization, represented by
minimum of the objective function, is achieved.

A good process model–accurate model with short simu-
lation time–is a prerequisite for application in the optimal
control strategy. A phenomenological model of a polymeriz-
ation process is difficult to obtain and use, especially in
complex applications such as optimal control of the
process. The difficulties lie with the complex and numerous
reactions and chemical species occurring simultaneously
inside the reactor, the large number of kinetic parameters
that are usually not easy to determine, as well as the poor
understanding of chemical and physical phenomena for
mixtures involving polymers. It was mentioned above that
the reactions for polysiloxane synthesis are very complexes
including a series of ring-opening polymerization, polycon-
densation, depolymerization by cyclization and chain scram-
bling reactions occurring in the same time. Consequently, the
modeling with neural networks can overcome these difficul-
ties due to a series of advantages: the possibility of
applying this method to complex non-linear processes, the
ease in obtaining and using neural models, the possibility of
substituting experiments with predictions. Neural networks
possess the ability to learn what happens in the process
without actually modeling the physical and chemical laws
that govern the system. Neural models need only input-
output data (experimental or simulation data) so, their advan-
tages are evident against the complexity of the computation.

The neural network modeling implies the following stages:
collecting the training data by experiments, making up the
training and testing data sets, developing the neural network
topology, training and, finally, establishing the performance

of the neural network model by comparing the network
prediction to unseen (validation) data.
In general, a neural network consists of processing neurons

and information flow channels between the neurons, usually
called, “interconnections”. Each processing neuron calculates
the weighted sum of all interconnected signals from the
previous layer plus a bias term and then generates an output
through its activation transfer function. The adjustment of the
neural network function to experimental data (learning
process or training) is based on a non-linear regression pro-
cedure. Training is done by assigning random weights to each
neuron, evaluating the output of the network and calculating
the error between the output of the network and the known
results by means of an error or objective function. If the error
is large, the weights are adjusted and the process goes back to
evaluate the output of the network. This cycle is repeated till
the error is small or a stop criterion is satisfied (35).
The purpose of developing a neural model is to devise a set

of formulae that captures the essential relationships in the data.
These formulae are then applied to new sets of inputs to
produce corresponding outputs. This is called generalization
and represents subsequent phase after training-validation or
testing phase. Since a neural network is a nonlinear optimiz-
ation process made up of learning and testing phases, the
initial data set must be split into two subsets: one for training
and one for testing. A learning algorithm should lead to a
good fit to the training samples and, simultaneously, to a
network that has a good generalization capability. A network
is said to generalize well when the input-output relationship,
found by the network, is correct for input/output patterns of
validation data, which were never used in training the
network (unseen data).
The quality of the models strongly depends on the quality

of the involved neural networks. It is well known that the con-
struction of an efficient neural network is a function of many
factors. The amount and appropriateness of the available
training data is an important factor. Our experimental data
correspond to this statement from both points of view: a con-
siderable number of experiments were carried out and the
chosen conditions cover the whole domain of interest. It
must be mentioned that an experimentally composed
centered program of second order was used.
A multi-layered, feed-forward, fully connected network is

chosen in this paper for the copolymerization process
modeling. Reasons for the use of this kind of neural
network are the simplicity of its theory, ease of programming
and good results and because this neural network is a univer-
sal function in the sense that if topology of the network is
allowed to vary freely, it can take the shape of any broken
curve (19). The topology of the network is developed by a
trial and error method, following a balance between complex-
ity and performance.
GAs are among the most widely used stochastic search

algorithms and represent a promising alternative to gradient-
based optimization techniques for different classes of
problems. GA mimics the mechanics of natural selection andFig. 1. The optimization method based on NN and GA.
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natural genetics to find the solution of optimization problems.
Starting from an initial population (an initial set of solutions),
generated on a random basis, new populations are created repe-
titively from the parent population until a solution is deter-
mined. Each solution in the population is called a
chromosome (or individual) and represents a point in the
search space. In a GA, a fitness value is assigned to each indi-
vidual according to a problem-specific objective function. Gen-
eration by generation, the new individuals, called offspring, are
created and survive with chromosome in the current popu-
lation, called parents, to form a new population. Based upon
the Darwinian theory of survival of the fittest, only individuals
well fit for the environment (i.e., optimization problem)
proceed to the next generation.

The chromosomes are evolved through successive iter-
ations, called generations, by genetic operators: selection,
crossover and mutation, until a stopping criterion is satisfied.
In a GA, a set of solutions are analyzed and modified by
genetic operations simultaneously, where selection operator
can select some “good” solutions as seeds, a crossover
operator can generate new solutions, hopefully retaining
good features from parents, and a mutation operator can
enhance diversity and provide a chance to escape from
local optima (36, 37).

In this paper, a simple genetic algorithm (SGA) with real
value encoding for the chromosomes was used. The initial
population is generated randomly. Offspring is created by
genetic operators and it is stored in a population pool that is
a collection of offspring and their parents.

There are different methods for the selection phase; our
paper uses rank selection which first ranks the population
and then every chromosome receives fitness from this
ranking. The individuals with higher fitness must have more
chances to reproduce.

The recombination (crossover) has as main purpose, the
recombination of the features of two randomly selected
parents from the mating pool with the aim of producing
better offspring. The variant of crossover used in this study
presumes different points for all genes, that means the new
individual will no longer be on the line segment that links
its parents. The offspring will look more like one parent
regarding a feature and less regarding another.

After recombination, offspring undergoes to mutation.
Generally, the mutation refers to the creation of a new
chromosome from one and only one individual with prede-
fined probability. Mutation is used to produce small pertur-
bations on chromosomes to promote diversity of the
population. Our GA includes a variant of mutation named
resetting. A gene value is reset to a random value in its
search interval. The purpose is to refresh the search process,
in a case when the genetic diversity of the population
decreases (so no longer converges to the solution) or the
algorithm has converged into a local optimum. Each gene is
independently considered, and mutation gives it a new
random value in the initialization interval. Only some genes
change (possibly all, but unlikely).

After three operators are carried, the offspring is inserted
into the population, replacing the parent chromosomes in
which they were derived, producing a new generation. The
best individual is copied directly into the new population
(the elitism technique) and the rest of the individuals are
replaced by the new generations. So, in order to keep the
best solution, we have considered an elitism factor fe ¼ 1,
that is the best individual is copied directly in the new gener-
ation. That ensures that the overall solution of the GA will not
get worse.

The termination criterion determines when GAwill stop. In
other words, the genetic operations are repeated until a ter-
mination condition is met. In our implementation, we stop
GA, if a maximum number of generations has been
executed or reaches the pre-set number of generations
without improvement in the last best solution.

Figure 2 presents the general flowchart of a simple genetic
algorithm.

Therefore, the optimization procedure proposed in this
paper is composed by two stages: modeling with neural
networks and optimization based on genetic algorithms.

1) In our work, modeling the studied process assumes:
. Establishing the neural network topology and its
training with the well known back-propagation
algorithm.

. Validating the neural model with data not used in the
training phase.

2) In the optimization procedure, the following distinct
phases can be emphasized:

. The value imposed for the copolymer composition F1d

is fixed by the user.
. The genetic algorithm computes the weights w

attached to the objectives and the values of the
decision variables t, T, C, f1.

. The neural model uses as inputs the four decision vari-
ables and provides predictions –x and F1f –necessary
for evaluating the objective function.

3 Results and Discussion

Experimental data from Table 1 were used to train different
neural networks, which have four inputs (t, T, C, f1)
and two outputs (x and F1). 15% of these data represent a
validation data set and the remaining data is the training
data set.

Table 2 contains different feed forward topologies tested
with selected training data and the main performances for
these networks: MSE (Mean Squared Error), r (correlation
between experimental and neural network outputs) and Ep

(percent error). The structure of a network of MLP type (mul-
tilayer perceptron–feed forward neural network) is given by
the number of neurons in the input layer, corresponding to
the four input variables, then the number of hidden neurons
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(in one or two layers) and, finally, the number of neurons in
output layer for the output variables. The multi-layer percep-
tron (MLP) is the best known and most widely used kind of
neural network. This paper also recommends MLP for
polymerization reaction modeling.

Hidden neurons, as well as output layer neuron, use a hyper-
bolic tangent as nonlinear activation functions. All the
network weights were initialized as random numbers in
the interval (20.5, 0.5). The networks were trained using
the back-propagation algorithm. Once the data have been
fed into the neural networks, the weights were updated

continuously based upon the back propagation learning rule.
The training phase was considered complete when the error
of all the training patterns was less than a pre-specified error
criterion or a maximum number of epochs (iterations) had
been reached. If, after the entire set of training patterns was
presented, the overall error was still unacceptable, the neural
network would be returned to the beginning of the training
patterns and the process would be repeated. So, the training
is considered terminated at the point where network error
(MSE) becomes sufficiently small.
The mean squared error was computed using the following

formula:

MSE ¼
1

M � L

XM
k¼1

XL
p¼1

d
p
k � y

p
k

� �2
ð5Þ

whereM is the number of nodes in output layer and L-number
of exemplars in the data set (number of patterns), dk

p is the
desired output for exemplar p at processing element k and
yk
p is the network output for exemplar p at processing

element k.
In this work, the number of hidden layers and units was

established by training a different range of networks and
selecting the one that best balanced generalization perform-
ance against network size. Consequently, a configuration of
4 input neurons, a single hidden layer with 10 neurons and
an output layer with 2 neurons, noted MLP (4:10:2) was used.
The predictions of the neural network on the training data

were compared to the experimental ones in order to verify
how the model learned the behavior of the process.
Good predictions are obtained with the neural model

MLP (4:10:2), on training data: average relative errors of
0.0027% for conversion and 0.00001% for copolymer com-
position. The correlation between experimental data and
network predictions was more than 0.999. Relative errors
were calculated using the following formula:

Er ¼
pexp � pnet

pexp
� 100 ð6Þ

where p represents the parameter under study (conversion and
copolymer composition), indexes exp and net denote exper-
imental and neural network values.
Several examples are presented in Fig. 3 and 4, which show

a comparison between two sets of data, experimental and
network outputs.
Good agreement between the two data sets proves that the

neural model has learned well the behavior of the process.

Fig. 2. General flow chart of a genetic algorithm.

Table 2. Different MLP topologies trained for the
copolymerization process

No. Topology MSE r Ep

1 MLP (4:5:2) 0.000315 0.999374 2.1151
2 MLP (4:7:2) 0.000200 0.999529 0.7898

3 MLP (4:10:2) 0.000001 1 0.000017
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The simple topology of the neural model (only one intermedi-
ate layer with 10 neurons), the small training time and the
very good results obtained in training the model are related
to the quality of the experimental data and the way in
which they cover the experimental domain. A planned exper-
iment is a guarantee that the reaction domain was covered
evenly.

A key issue in neural network based process modeling is
the robustness or generalization capability of the developed
models, i.e., how well the model performs on unseen data.
Thus, a serious examination of the accuracy of the neural
network results requires the comparison with experimental
data, which were not used in the training phase (previously
unseen data). The predictions of the networks on validation
data are given in Table 3.

One can notice a satisfactory agreement between the two
categories of data, experimental and neural network predic-
tions, with an average relative error less than 4%. For this

reason, the projected neural model MLP (4:10:2) can be
used to make predictions under different reaction conditions,
and, also, can be included into the optimization procedure.

Process optimization is a very important in polymer
industry being related to the production cost reduction and
higher quality requirements. However, product quality is a
much more complex issue in polymerization than in most
conventional short chain reactions. Because the molecular
architecture of the polymer is so sensitive to reactor operating
conditions, such as upsets in reaction conditions can alter
critical molecular properties. Because the main goal in oper-
ating a polymerization reactor is to produce a final polymer
with certain chemical and mechanical properties, the require-
ment of an accurate process model for the optimal quality
control is becoming very important. In addition, an optimiz-
ation technique must be involved to obtain the reaction con-
ditions that give certain values of an objective function.

A mathematical model can easily predict the polymer prop-
erties from the inputs of the reactor conditions. But the other
way around (inverse modeling) is much more difficult to do
and an optimization technique, highly time consuming,
must be involved. The optimization approach can be substi-
tuted by a neural network trained to do the same job.

The inverse neural modeling that is the determination of
reaction conditions that lead to pre-established properties,
has as advantage the substitution of complex modeling and
optimization procedure with a simple and rapid technique
often supplying reliable results. Generally, once trained, the
neural network can estimate the reactor operating conditions
faster than the optimization algorithm.

Various neural network models are developed for predict-
ing the reaction conditions for obtaining copolymers with pre-
specified compositions. The optimization problem based on
inverse neural network modeling can be formulated in differ-
ent ways, such as:

Problem 1. What is the initial composition of the reaction
mixture and how much time is necessary to achieve a
final desired composition for the copolymer, working at
pre-established values of temperature and amount of
catalyst?

Problem 2. What are the reaction temperature and time
necessary to achieve a final desired composition for the
copolymer, working at pre-established values of amount
of catalyst and initial composition of the monomers?

Fig. 3. Experimental data (white bars) and neural network results

(black bars) obtained with MLP (4:10:2), in the training phase for
reaction conversion.

Fig. 4. Experimental data (white bars) and neural network results
(black bars) obtained with MLP (4:10:2), in the training phase for
copolymer composition.

Table 3. Results of the MLP (4:10:2) on validation data

t T C f1

Experim
x

Network
x

Experim
F1

Network
F1

0.75 45 4.5 0.3 4.46 4.11 0.55 0.59
1.25 60 5.5 0.5 44.78 42.50 0.65 0.69

1.75 75 2.5 0.3 41.5 39.8 0.44 0.42
1.75 75 4.5 0.7 68.61 67.1 0.78 0.81
1.25 60 3.5 0.5 32.53 29.8 0.69 0.67
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Problem 3.What are the amount of catalyst and reaction time
necessary to achieve a final desired composition for the
copolymer, working at pre-established values of tempera-
ture and initial composition of the monomers?

One of the above problems, for instance problem 1, is
exemplified in the following. In this case, the neural
network which performs the inverse modeling has as inputs
F1f, T, C and as outputs f1, t. In this optimization, the
imposed parameters represent the objectives to be accom-
plished and the parameters computed by the neural model
are decision variables.

The same methodology based on trial and errors is applied for
determining the topology of the neuralmodel.Different networks
of MLP type are trained and, taking into account their perform-
ance, MLP (3:10:2), that means a network with one hidden
layer with 10 neurons, is chosen. In the training phase,
MSE ¼ 0.006123, r ¼ 0.989 and Ep ¼ 2.1685. Figures 5 and 6

illustrate the comparison between experimental data and the
results of the neural model obtained in the training phase.
Table 4 shows the validation phase for the inverse model

MLP (3:10:2). Table 5 contains some recommendations
obtained as predictions of inverse neural model for perform-
ing several experiments, according to the optimization
problem 1: the final composition of the copolymer, tempera-
ture and amount of catalyst are established and one deter-
mines, by inverse neural modeling, the reaction time and
the initial composition of the monomer mixture, which lead
to the desired copolymer composition.
The key advantage of using a GA to search for the global

optimum is the ability of the GA to do a multi-pronged popu-
lation based search. The performance of a GA critically
depends on the representation of the solutions, the definition
of the genetic operators that transforms the solutions from one
generation to another and the values of the algorithmic par-
ameters such as the percentage of elitism and the probabilities
of mutation and crossover. In this study, we use a floating
point representation of the parameters. Rank-based selection
procedure is used in every generation to identify the individ-
uals to be manipulated by the GA operators.
Population size, number of generations, crossover prob-

ability and mutation probability are known as the control par-
ameters of genetic algorithms. The values of these parameters
must be specified before the execution of GA and they depend
on the nature of the objective function.
The results of the optimization are represented by the

values of the decision variables Equation (2) that lead to a
minimum value of the objective function (Equation (3)),
which means, from the point of view of partial objectives,

Fig. 5. Experimental data (white bars) and neural network results
(black bars) obtained with MLP (3:10:2) in the training phase of
inverse modeling for the reaction time.

Fig. 6. Experimental data (white bars) and neural network results
(black bars) obtained with MLP (3:10:2) in the training phase of
inverse modeling for the initial composition of the reaction mixture.

Table 4. Validation of MLP (3:10:2) in inverse neural network
modeling

T C F1

Experim

t

Experim

f1

Network

t

Network

f1

Time

error

f1
error

45 4.5 0.55 0.75 0.3 0.79 0.29 5.33 3.33

60 5.5 0.654 1.25 0.5 1.29 0.48 3.2 4.00
75 2.5 0.439 1.75 0.3 1.69 0.32 3.42 6.66
75 4.5 0.777 1.75 0.7 1.71 0.68 2.28 2.85

Table 5. Predictions of MLP (3:10:2) in
inverse neural network modeling

T C F1 t f1

45 2.5 0.2 2.36 0.1
45 2.5 0.4 2.36 0.2
45 2.5 0.8 2.36 0.9
50 2.5 0.2 2.36 0.1

50 2.5 0.5 2.36 0.4
50 2.5 0.8 1.68 0.4
40 3 0.4 2.36 0.2

40 3 0.6 0.14 0.3
40 3 0.8 2.36 0.9
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the maximization of the conversion and the achievement of
the imposed value for the copolymer composition.

The optimization procedure is implemented in Matlab 7.5

with original software, as specific functions were pro-
grammed for each phase of the genetic algorithm.

One obvious problem of the optimization that combines
many objectives into a single function is that it may be diffi-
cult to generate a set of weights (namely w in Equation (3))
that properly scales the objectives when little is known
about the problem. A single weighted sum approach
requires a priori knowledge of the weights to vary the
emphasis given to each objective. The present approach has
the advantage of computing the optimal values for the
weights coefficients of the objectives within the genetic algor-
ithm, along with the optimal values for decision variables.

The optimization results are presented in a series of tables
with the following structure: column 1 contains the identifi-
cation number used to refer the optimization in the discussions;
columns 2, 3 and 4 contain the parameters of the genetic

algorithm: the size of the initial population, pop_size, the
number of generations, gen_no and the values for mutation
and crossover rates, mut_rate, cross_rate; column 5–the
weights of the objectives computed within the genetic algor-
ithm; column 6–the optimal values of the decision variables
provided by the GA; column 7–monomer conversion and
copolymer composition obtained as predictions of the neural
model; column 8–the value of the objective function and the
imposed value for copolymer composition.

Since GA is a stochastic algorithm, we run it many times,
for each situation (each row in the tables of results) to get stat-
istically meaningful values for the time taken. Longer runs are
not necessary as GA is already a population-based procedure
that works with multiple solutions. One of the solutions (the
best solution) is chosen and inserted into the tables.

Table 6 contains optimizations where different values for
dimension of initial population (pop_size) and number of
generations (gen_no) are chosen. GA research showed that
the solution improves as the number of individuals in the

Table 6. Optimizations with different values for the two GA parameters: size of initial population and number of generations

No. pop_size gen_no
cross_rate
mut_rate

Weights
calculated by GA

Control
variables Outputs NN J, F1d

1 50 100 cross_rate ¼ 0.9

mut_rate ¼ 0.03

wx ¼ 0.4725

wF1 ¼ 7.4476

t ¼ 2.17

T ¼ 86.22
C ¼ 3.90
F1 ¼ 0.55

x ¼ 63.62

F1 ¼ 0.69

J ¼ 0.172217

F1d ¼ 0.7

2 50 500 cross_rate ¼ 0.9

mut_rate ¼ 0.03

wx ¼ 0.1148

wF1 ¼ 1.3562

t ¼ 2.25

T ¼ 96.33
C ¼ 3.61
F1 ¼ 0.6

x ¼ 64.57

F1 ¼ 0.69

J ¼ 0.04103

F1d ¼ 0.7

3 50 1000 cross_rate ¼ 0.9

mut_rate ¼ 0.03

wx ¼ 0.0463

wF1 ¼ 1.2506

t ¼ 2.24

T ¼ 96.57
C ¼ 3.85
F1 ¼ 0.59

x ¼ 64.26

F1 ¼ 0.7

J ¼ 0.016534

F1d ¼ 0.7

4 50 2000 cross_rate ¼ 0.9
mut_rate ¼ 0.03

wx ¼ 0.0139
wF1 ¼ 0.1613

t ¼ 2.08
T ¼ 109.91

C ¼ 2.77
F1 ¼ 0.64

x ¼ 64.59
F1 ¼ 0.7

J ¼ 0.004914
F1d ¼ 0.7

5 100 100 cross_rate ¼ 0.9
mut_rate ¼ 0.03

wx ¼ 0.8618
wF1 ¼ 42.6603

t ¼ 1.9806
T ¼ 89.52

C ¼ 3.45
F1 ¼ 0.58

x ¼ 63.65
F1 ¼ 0.7

J ¼ 0.313386
F1d ¼ 0.7

6 200 200 cross_rate ¼ 0.9
mut_rate ¼ 0.03

wx ¼ 0.0802
wF1 ¼ 11.2916

t ¼ 1.99
T ¼ 85.85

C ¼ 3.39
F1 ¼ 0.58

x ¼ 63.08
F1 ¼ 0.7

J ¼ 0.029593
F1d ¼ 0.7

7 500 200 cross_rate ¼ 0.9
mut_rate ¼ 0.03

wx ¼ 0.0105
wF1 ¼ 45.9843

t ¼ 1.82
T ¼ 94.57

C ¼ 2.72
F1 ¼ 0.60

x ¼ 63.84
F1 ¼ 0.7

J ¼ 0.003799
F1d ¼ 0.7

8 200 500 cross_rate ¼ 0.9
mut_rate ¼ 0.03

wx ¼ 0.0048
wF1 ¼ 5.2066

t ¼ 2.19
T ¼ 90.67

C ¼ 3.18
F1 ¼ 0.6

x ¼ 63.89
F1 ¼ 0.7

J ¼ 0.001730
F1d ¼ 0.7
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population increases, but only up to a point. Beyond that, a
larger population decreases the convergence speed of the
algorithm, without leading to an improvement of the
solution. With the increase in the number of generations,
the execution time increases. Since the GA is an iterative pro-
cedure, the quality of the solution should increase with the
number of generations, especially if elitism is used, which
guarantees the fact that the solution will not worsen over
time. But for each parameter and process there is a limit
beyond which there are no more improvements of the results.

Some observations have to be made for the results pre-
sented in Table 6, without the choice of GA parameters.

In all cases, 1–8, F1 ¼ F1d, that is one of the optimization
goals, but the reaction conversion is relatively small. In the

case of the dimethylmethylvinylsiloxane copolymers, the rela-
tively low values for conversion can be explained by reversibil-
ity of the process. The position of the equilibrium depends on
some factors between them being also the silicon substituent
nature. Thus, by increasing the bulk of the substituents, the equi-
librium shifts to the left and, as a result, the conversion will be
lower. The experimental data showed in Table 1 reflect such a
situation: the maximum conversion is 68% irrespective of the
used parameter values combination.
The solution of a multi-objective optimization can be con-

sidered from two points of view: mathematically (minimum
value for the objective criterion, J) and technologically, by
appreciating each individual objective. In Table 6, the par-
ameters pop_size and gen_no were chosen accordingly with

Table 7. Optimizations with different values for the two GA parameters: crossover rate and mutation rate

No. pop_size gen_no
cross_rate
mut_rate

Weights

calculated by
GA

Control
variables Outputs NN J, F1d

1 50 500 cross_rate ¼ 0.9

mut_rate ¼ 0.03

wx ¼ 0.1148

wF1 ¼ 1.3562

t ¼ 2.25

T ¼ 96.33
C ¼ 3.61
F1 ¼ 0.6

x ¼ 64.27

F1 ¼ 0.69

J ¼ 0.041033

F1d ¼ 0.7

2 50 500 cross_rate ¼ 0.8

mut_rate ¼ 0.03

wx ¼ 0.4460

wF1 ¼ 0.7236

t ¼ 2.18

T ¼ 102
C ¼ 3.62
F1 ¼ 0.61

x ¼ 64.41

F1 ¼ 0.7

J ¼ 0.158722

F1d ¼ 0.7

3 50 500 cross_rate ¼ 0.5
mut_rate ¼ 0.03

wx ¼ 0.0193
wF1 ¼ 0.4136

t ¼ 2.23
T ¼ 100.66

C ¼ 3.98
F1 ¼ 0.59

x ¼ 64.35
F1 ¼ 0.7

J ¼ 0.006878
F1d ¼ 0.7

4 50 500 cross_rate ¼ 0.1
mut_rate ¼ 0.03

wx ¼ 0.0293
wF1 ¼ 0.1532

t ¼ 2.23
T ¼ 91.34

C ¼ 4.35
F1 ¼ 0.55

x ¼ 64.01
F1 ¼ 0.7

J ¼ 0.010551
F1d ¼ 0.7

5 50 500 cross_rate ¼ 0.9
mut_rate ¼ 0.1

wx ¼ 0.0980
wF1 ¼ 0.2540

t ¼ 2.17
T ¼ 101.74

C ¼ 2.53
F1 ¼ 0.61

x ¼ 64.40
F1 ¼ 0.7

J ¼ 0.034874
F1d ¼ 0.7

6 50 500 cross_rate ¼ 0.9
mut_rate ¼ 0.5

wx ¼ 0.2500
wF1 ¼ 41.4896

t ¼ 1.78
T ¼ 107.81

C ¼ 3.82
F1 ¼ 0.61

x ¼ 64.42
F1 ¼ 0.7

J ¼ 0.08874
F1d ¼ 0.7

7 50 500 cross_rate ¼ 0.9
mut_rate ¼ 0.8

wx ¼ 0.0539
wF1 ¼ 70.9907

t ¼ 1.09
T ¼ 79.71

C ¼ 3.11
F1 ¼ 0.56

x ¼ 55.05
F1 ¼ 0.7

J ¼ 0.024970
F1d ¼ 0.7

8 50 500 cross_rate ¼ 0.9
mut_rate ¼ 0.01

wx ¼ 0.2624
wF1 ¼ 0.1705

t ¼ 2.10
T ¼ 109.72
C ¼ 2.59

F1 ¼ 0.63

x ¼ 64.59
F1 ¼ 0.7

J ¼ 0.092923
F1d ¼ 0.7

9 50 500 cross_rate ¼ 0.9
mut_rate ¼ 0.05

wx ¼ 2.4342
wF1 ¼ 2.9994

t ¼ 2.18
T ¼ 108.33
C ¼ 2.85

F1 ¼ 0.63

x ¼ 64.57
F1 ¼ 0.7

J ¼ 0.862324
F1d ¼ 0.7
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the conversion value. Even the higher values forGAparameters
lead to smaller values for J, the conversion did not become
better.Consequently, pop_size ¼ 50 and gen_no ¼ 500are suf-
ficient for our goal.

The crossover rate (cross_rate) represents the probability
with which a new individual is generated from two parents. If
the rate is small, there is a high chance that one of the parents
will be directly copied into the new population. Since crossover
is the basis of the searchprocess, a rate close to 1 should increase
the speed of finding a solution. As a rule of thumb, the crossover
probability is generally greater than 0.75 so as to encourage
better exploration of the search space. Copying a parent into
the new population is beneficial only when it has a high
fitness value (the elitism achieves this objective in order not to
lose the best solutions). Table 7 motivates the choice of the
0.9 rate, based both on partial objectives, and on the minimum
value of the objective function.

Particularly, for the process under study, the GA par-
ameters do not have significant influence on the optimization
results. In Table 7, one can see that different values for the
crossover and mutation rates lead to similar results for
reaction conversion and copolymer composition. Only a
high mutation rate in optimization no. 7 worsens the conver-
sion value.

Therefore, the appropriate parameters of GA used to solve
the proposed optimization problem are: pop_size ¼ 50,
gen_no ¼ 500, cross_rate ¼ 0.9 and mut_rate ¼ 0.03.

The use of a scalar objective function that weightily
combined its partial objectives presents disadvantages, as
well as advantages. The main disadvantage comes from the
weight coefficients, which have to be previously known. As

advantages, one can mentioned the simplicity of the optimiz-
ation solving based on a scalar function and that the user can
give priority to one of the partial objective by manipulating
the values of the weights. In this work, the disadvantage of
the scalarization is counteracted by the fact that GA
computes the weight coefficients along with the optimal
values of the control variables. This is possible because the
GA considers the optimization problem globally, irrespective
of the particular meaning given to the chromosomes.

Table 8 contains some optimizations where the user
imposes certain weights, depending on the objective with
greater importance and based on accumulated knowledge
about the process.

Even if the user imposes a high value for conversion
weight, the conversion value does not exceed 64%. The syn-
thesis process of dimethylmethylvinylsiloxane copolymers is
not sensitive to weight values in the scalar optimization
procedure.

The last table (Table 9) contains optimizations performed
with different weights, imposed by the user or computed
within the GA method, and with different values of
F1d. When GA provides optimal values for the weight co-
efficients, one of the goals of the optimization is achieved:
F1f ¼ F1d.

The optimization procedure based on a simple genetic
algorithm and a neural network model applied in this paper
is easy to manipulate and provides satisfactory results. In
this way, a theoretical analysis of the synthesis of statistical
dimethylmethylvinylsiloxane copolymers approached here
is performed, with useful information for the practical
application.

Table 8. Optimizations performed with the imposed values for the weight coefficients

No. pop_size gen_no
cross_rate
mut_rate

Weights
coefficients

Control
variables Outputs NN J, F1d

1 50 500 cross_rate ¼ 0.9
mut_rate ¼ 0.03

wx ¼ 0.5
wF1 ¼ 2

t ¼ 2.10
T ¼ 109.75
C ¼ 2.61

F1 ¼ 0.63

x ¼ 64.59
F1 ¼ 0.7

J ¼ 0.177052
F1d ¼ 0.7

2 50 500 cross_rate ¼ 0.9
mut_rate ¼ 0.03

wx ¼ 5
wF1 ¼ 1

t ¼ 2.08
T ¼ 109.86
C ¼ 2.78

F1 ¼ 0.64

x ¼ 64.59
F1 ¼ 0.7

J ¼ 1.77015
F1d ¼ 0.7

3 50 500 cross_rate ¼ 0.9
mut_rate ¼ 0.03

wx ¼ 10
wF1 ¼ 0.5

t ¼ 2.09
T ¼ 109.65
C ¼ 2.79

F1 ¼ 0.64

x ¼ 64.59
F1 ¼ 0.7

J ¼ 3.540571
F1d ¼ 0.7

4 50 500 cross_rate ¼ 0.9
mut_rate ¼ 0.03

wx ¼ 50
wF1 ¼ 0.1

t ¼ 2.18
T ¼ 109.91
C ¼ 2.83

F1 ¼ 0.69

x ¼ 64.60
F1 ¼ 0.75

J ¼ 17.70017
F1d ¼ 0.7

5 50 500 cross_rate ¼ 0.9
mut_rate ¼ 0.03

wx ¼ 100
wF1 ¼ 0.1

t ¼ 2.24
T ¼ 109.95
C ¼ 2.86

F1 ¼ 0.72

x ¼ 64.60
F1 ¼ 0.78

J ¼ 35.39882
F1d ¼ 0.7
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The modeling and optimization procedures based on NN
and GA can be also applied to other processes for which
the amount of knowledge is limited.

4 Conclusions

This paper provides a general and simple optimization
strategy, based on genetic algorithms and neural networks,
applied to a complex polymerization process. The GA
solves the optimization problem and computes the weights
attached to the partial objectives, and NN constitutes the
model included in the optimization procedure.

Simple architecture neural networks (feedforward
networks with one hidden layer) and simple methods of estab-
lishing the networks’ structure are used in this paper. A series
of experiments planned by a composed centered second order
program is carried out to obtain statistical dimethyl-methylvi-
nylsiloxane copolymers and represents the training and vali-
dation data sets for the networks. Accurate results obtained
as predictions of neural model on previously unseen data

(validation data) prove an acceptable generalization capa-
bility of the model and make it reliable for the optimization.
Regarding the optimization procedure, several issues can

be underlined. The association between a scalar objective
function with the objectives weightily combined and a GA
solving method represents a recommended optimization
method because of its simplicity and accurate results.
Additionally, the procedure adopted here has the advantage
of determining the objective weights within the GA algor-
ithm, along with the optimal control variables, and is useful
in cases where little knowledge is available about the system.
The inverse neural network modeling represents a particu-

lar variant of optimization, useful for the synthesis of
polymers with pre-ordained properties. In our approach, one
estimates the reaction conditions that lead to a copolymer
with desired composition.
The article especially addresses the establishment of a

general strategy for solving a multiobjective optimization
problem using genetic algorithms. This strategy is quite
general and could be applied to other polymerization pro-
cesses, with a high probability to obtain accurate results.

Table 9. Optimizations performed with different values pre-established for the final composition of the copolymers

No. pop_size gen_no
cross_rate
mut_rate

Weights
coefficients

Control
variables Outputs NN J, F1d

1 50 500 cross_rate ¼ 0.9
mut_rate ¼ 0.03

wx ¼ 0.2692
wF1 ¼ 1.3656

GA weights

t ¼ 2.23
T ¼ 108.27

C ¼ 2.90
F1 ¼ 0.34

x ¼ 64.38
F1 ¼ 0.3

J ¼ 0.095898
F1d ¼ 0.3

2 50 500 cross_rate ¼ 0.9
mut_rate ¼ 0.03

wx ¼ 50
wF1 ¼ 0.1
user weights

t ¼ 2.24
T ¼ 109.9
C ¼ 2.69

F1 ¼ 0.43

x ¼ 64.55
F1 ¼ 0.4

J ¼ 17.73202
F1d ¼ 0.3

3 50 500 cross_rate ¼ 0.9
mut_rate ¼ 0.03

wx ¼ 0.5302
wF1 ¼ 0.0973
GA weights

t ¼ 0.47
T ¼ 108.73
C ¼ 3.05

F1 ¼ 0.0044

x ¼ 57.88
F1 ¼ 0.1

J ¼ 0.329219
F1d ¼ 0.1

4 50 500 cross_rate ¼ 0.9
mut_rate ¼ 0.03

wx ¼ 0.2035
wF1 ¼ 0.4898
GA weights

t ¼ 2.23
T ¼ 85.18
C ¼ 4.18

F1 ¼ 0.4

x ¼ 63.24
F1 ¼ 0.5

J ¼ 0.07483
F1d ¼ 0.5

5 50 500 cross_rate ¼ 0.9
mut_rate ¼ 0.03

wx ¼ 50
wF1 ¼ 0.1
user weights

t ¼ 2.11
T ¼ 109.99
C ¼ 2.70

F1 ¼ 0.52

x ¼ 64.58
F1 ¼ 0.55

J ¼ 17.70738
F1d ¼ 0.5

6 50 500 cross_rate ¼ 0.9
mut_rate ¼ 0.03

wx ¼ 0.0874
wF1 ¼ 0.1875
GA weights

t ¼ 2.22
T ¼ 109.84
C ¼ 3.28

F1 ¼ 0.87

x ¼ 64.56
F1 ¼ 0.9

J ¼ 0.030962
F1d ¼ 0.9

7 50 500 cross_rate ¼ 0.9
mut_rate ¼ 0.03

wx ¼ 50
wF1 ¼ 0.1
user weights

t ¼ 2.23
T ¼ 109.56
C ¼ 2.91
F1 ¼ 0.74

x ¼ 64.59
F1 ¼ 0.80

J ¼ 17.70267
F1d ¼ 0.9
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